PH, pKa, Acids, Bases and Buffers.

Problems, Excercises:

- A. Define and give examples wherever applicable.
- 1. Acids and Bases
- 2. Conjugate acid-conjugate base pair
- 3. Strong acid and strong base
- 4. Weak acid and weak base
- 5. The ion product of water
- 6. Neutrality
- 7. PH
- 8. Titration, titration curve
- 9. PKa
- 10. Henderson-Hasselbalch equation
- 11. Buffer
- 12. Buffering capacity

B. Explain

- 1. Why do buffers, which are made from weak acids and bases, resist pH changes better than strong acids and bases in the physiological range of pH?
- 2. A series of enzyme assays is to be performed at pH 7.0. Why would phosphate be a good choice of buffer? Which species of phosphate would predominate at pH 7.0?

C. Calculate

- 1. The pH for hydrogen ion concentrations of
 - a. $1 \times 10^{-6} \text{ M}$
 - b. 2×10^{-6} M
 - c. 4×10^{-6} M
 - d. $6 \times 10^{-6} \text{ M}$
 - e. 8×10^{-6} M
 - f. 1×10^{-5} M
- 2. The hydrogen ion concentration for the normal limits of blood pH: 7.37 and 7.43
- 3. The hydrogen ion concentration at $[OH^{-}] = 5 \times 10^{-5}$.
- 4. The approximate pH of a 10-8 M solution of HCl.
- 5. The endpoint of the titration of NH3 with strong acid.
- 6. The ration of acetate ion / acetic acid in an acetate buffer at pH 3, 4, 5, and 6.
- 7. The final pH when 5 mmols KOH is added to 1 L of $4 \times 10-3$ M HCl. (For simplicity, assume that the final volume is not changed significantly)

Note: Answers will be posted soon